Priority effects alter microbiome composition and increase abundance of probiotic taxa in treefrog tadpoles

Author:

Jones Korin Rex1ORCID,Belden Lisa K.1,Hughey Myra C.2

Affiliation:

1. Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA

2. Department of Biology, Vassar College, Poughkeepsie, New York, USA

Abstract

ABSTRACT Host-associated microbial communities, like other ecological communities, may be impacted by the colonization order of taxa through priority effects. Developing embryos and their associated microbiomes are subject to stochasticity during colonization by bacteria. For amphibian embryos, often developing externally in bacteria-rich environments, this stochasticity may be particularly impactful. For example, the amphibian microbiome can mitigate lethal outcomes from disease for their hosts; however, this may depend on microbiome composition. Here, we examined the assembly of the bacterial community in spring peeper ( Pseudacris crucifer ) embryos and tadpoles. First, we reared embryos from identified mating pairs in either lab or field environments to examine the relative impact of environment and parentage on embryo and tadpole bacterial communities. Second, we experimentally inoculated embryos to determine if priority effects (i) could be used to increase the relative abundance of Janthinobacterium lividum , an amphibian-associated bacteria capable of preventing fungal infection, and (ii) would lead to observed differences in the relative abundances of two closely related bacteria from the genus Pseudomonas . Using 16S rRNA gene amplicon sequencing, we observed differences in community composition based on rearing location and parentage in embryos and tadpoles. In the inoculation experiment, we found that priority inoculation could increase the relative abundance of J. lividum , but did not find that either Pseudomonas isolate was able to prevent colonization by the other when given priority. These results highlight the importance of environmental source pools and parentage in determining microbiome composition, while also providing novel methods for the administration of a known amphibian probiotic. IMPORTANCE Harnessing the functions of host-associated bacteria is a promising mechanism for managing disease outcomes across different host species. In the case of amphibians, certain frog-associated bacteria can mitigate lethal outcomes of infection by the fungal pathogen Batrachochytrium dendrobatidis . Successful probiotic applications require knowledge of community assembly and an understanding of the ecological mechanisms that structure these symbiotic bacterial communities. In our study, we show the importance of environment and parentage in determining bacterial community composition and that community composition can be influenced by priority effects. Further, we provide support for the use of bacterial priority effects as a mechanism to increase the relative abundance of target probiotic taxa in a developing host. While our results show that priority effects are not universally effective across all host-associated bacteria, our ability to increase the relative abundance of specific probiotic taxa may enhance conservation strategies that rely on captive rearing of endangered vertebrates.

Funder

National Science Foundation

Vassar College

Virginia Tech

Tom and Ana Moore

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3