Author:
Liu Zihe,Liu Lifang,Österlund Tobias,Hou Jin,Huang Mingtao,Fagerberg Linn,Petranovic Dina,Uhlén Mathias,Nielsen Jens
Abstract
ABSTRACTThe increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeastSaccharomyces cerevisiaeis widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in theVTA1gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献