Biofilm formation by heat-resistant dairy bacteria: multispecies biofilm model under static and dynamic conditions

Author:

Diarra Carine12ORCID,Goetz Coralie12ORCID,Gagnon Mérilie12ORCID,Roy Denis12,Jean Julie12ORCID

Affiliation:

1. Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada

2. Regroupement de recherche pour un lait de qualité optimale (Op+Lait), Saint-Hyacinthe, Québec, Canada

Abstract

ABSTRACT In the food industry, especially dairy, biofilms can be formed by heat-resistant spoilage and pathogenic bacteria from the farm. Such biofilms may persist throughout the processing chain and contaminate milk and dairy products continuously, increasing equipment cleaning, maintenance costs, and product recalls. Most biofilms are multispecies, yet most studies focus on single-species models. A multispecies model of dairy biofilm was developed under static and dynamic conditions using heat-resistant Bacillus licheniformis, Pseudomonas aeruginosa, Clostridium tyrobutyricum, Enterococcus faecalis, Streptococcus thermophilus, and Rothia kristinae isolated from dairies. C. tyrobutiricum and R. kristinae were weak producers of biofilm, whereas the other four were moderate to strong producers. Based on cross-streaking on agar, P. aeruginosa was found to inhibit B. licheniformis and E. faecalis . In multispecies biofilm formed on stainless steel in a CDC reactor fed microfiltered milk, the strong biofilm producers were dominant while the weak producers were barely detectable. All biofilm matrices were dispersed easily by proteinase K treatment but were less sensitive to DNase or carbohydrases. Further studies are needed to deepen our understanding of multispecies biofilms and interactions within to develop improved preventive strategies to control the proliferation of spoilage and pathogenic bacteria in dairies and other food processing environments. IMPORTANCE A model of multispecies biofilm was created to study biofilm formation by heat-resistant bacteria in the dairy industry. The biofilm formation potential was evaluated under static conditions. A continuous flow version was then developed to study multispecies biofilm formed on stainless steel in microfiltered milk under dynamic conditions encountered in dairy processing equipment. The study of biofilm composition and bacterial interactions therein will lead to more effective means of suppressing bacterial growth on food processing equipment and contamination of products with spoilage and pathogenic bacteria, which represent considerable economic loss.

Funder

Canadian Agricultural Partnership AgriScience program

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3