High-level amikacin resistance in Escherichia coli due to phosphorylation and impaired aminoglycoside uptake

Author:

Perlin M H,Lerner S A

Abstract

Plasmid pMP1-1 in Escherichia coli L-0 encodes aminoglycoside (AG) 3'-phosphotransferase II [APH(3')-II]. This enzyme modifies and confers high-level resistance to kanamycin. Although amikacin is a substrate for APH(3')-II, strain L-0(pMP1-1) is susceptible to amikacin. Plasmid pMP1-2 is a spontaneous mutant of pMP1-1 which determines increased APH(3')-II activity for amikacin, apparently as a result of an increase in the copy number of the plasmid. From amikacin-susceptible, gentamicin-susceptible transformants and transconjugants that bear the APH(3')-II gene on plasmid pMP1-1 or pMP1-2 or cloned into multicopy plasmid pBR322, we selected spontaneous mutants at concentrations of amikacin or gentamicin that were two to four times higher than the MICs of these antibiotics. In each case, whether they were selected by using amikacin or gentamicin, the mutants exhibited modest (two- to eightfold) increases in the MIC of gentamicin and major (64- to 128-fold) increases in the MIC of amikacin. Using these laboratory strains of E. coli, we examined the effects on AG susceptibility of the interaction of AG-modifying enzyme activity and generalized AG uptake. Increasing the level of activity of an AG phosphotransferase in these strains lowered their susceptibility to AGs which were substrates for which the enzyme had low Kms. However, an increase in AG-modifying activity alone did not result in large increases in the MICs for poor substrates of the enzyme. In strains which lacked AG-modifying enzymes, a decrease in the rate of AG uptake increased the MICs modestly for a broad spectrum of AGs. When a strain bore the phosphotransferase, a decrease in generalized AG uptake could raise the MIC further, not only for low-Km substrates, but even for AG substrates for which the enzyme had high Kms. Thus, increased modifying activity, together with a diminished rate of uptake, could produce even higher MICs for poor AG substrates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3