Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae

Author:

Besansky N J1,Paskewitz S M1,Hamm D M1,Collins F H1

Affiliation:

1. Division of Parasitic Diseases, Centers for Disease Control, Atlanta, Georgia 30333.

Abstract

Two distinct site-specific retrotransposon families, named RT1 and RT2, from the sibling mosquito species Anopheles gambiae and A. arabiensis, respectively, were previously identified. Both were shown to occupy identical nucleotide positions in the 28S rRNA gene and to be flanked by identical 17-bp target site duplications. Full-length representatives of each have been isolated from a single species, A. gambiae, and the nucleotide sequences have been analyzed. Beyond insertion specificity, RT1 and RT2 share several structural and sequence features which show them to be members of the LINE-like, or non-long-terminal-repeat retrotransposon, class of reverse transcriptase-encoding mobile elements. These features include two long overlapping open reading frames (ORFs), poly(A) tails, the absence of long terminal repeats, and heterogeneous 5' truncation of most copies. The first ORF of both elements, particularly ORF1 of RT1, is glutamine rich and contains long tracts of polyglutamine reminiscent of the opa repeat. Near the carboxy ends, three cysteine-histidine motifs occur in ORF1 and one occurs in ORF2. In addition, each ORF2 contains a region of sequence similarity to reverse transcriptases and integrases. Alignments of the protein sequences from RT1 and RT2 reveal 36% identity over the length of ORF1 and 60% identity over the length of ORF2, but the elements cannot be aligned in the 5' and 3' noncoding regions. Unlike that of RT2, the 5' noncoding region of RT1 contains 3.5 copies of a 500-bp subrepeat, followed by a poly(T) tract and two imperfect 55-bp subrepeats, the second spanning the beginning of ORF1. The pattern of distribution of these elements among five siblings species in the A. gambiae complex is nonuniform. RT1 is present in laboratory and wild A. gambiae, A. arabiensis, and A. melas but has not been detected in A. quadriannulatus or A. merus. RT2 has been detected in all available members of the A. gambiae complex except A. merus. Copy number fluctuates, even among the offspring of individual wild female A. gambiae mosquitoes. These findings reflect a complex evolutionary history balancing gain and loss of copies against the coexistence of two elements competing for a conserved target site in the same species for perhaps millions of years.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3