Terminal differentiation in keratinocytes involves positive as well as negative regulation by retinoic acid receptors and retinoid X receptors at retinoid response elements.

Author:

Aneskievich B J,Fuchs E

Abstract

Terminal differentiation of epidermal keratinocytes is inhibited by 1 microM retinoic acid, a concentration which induces differentiation in a number of cell types, including F9 teratocarcinoma cells. The molecular basis for these opposing retinoid responses is unknown, although retinoic acid receptors (RARs) and retinoid X receptors (RXRs) have been detected in both cell types. When F9 cells are stably transfected with a truncated RAR alpha lacking the E/F domain necessary for ligand binding and RAR/RXR dimerization, action at retinoid response elements is suppressed and cells produce a retinoic acid-resistant phenotype; i.e., they are blocked in differentiation (A. S. Espeseth, S. P. Murphy, and E. Linney, Genes Dev. 3:1647-1656, 1989). If retinoid receptors influence epidermal differentiation only in a negative fashion, then suppression of transactivation at retinoid response elements would be expected to enhance, rather than block, keratinocyte differentiation. In this study, we show that surprisingly, even though constitutive expression of an analogous truncated RAR gamma in keratinocytes specifically suppressed transactivation at retinoid response elements, keratinocytes were blocked, rather than enhanced, in their ability to undergo morphological and biochemical features of differentiation. These findings demonstrate a direct and hitherto unrecognized role for RARs and RXRs in positively as well as negatively regulating epidermal differentiation. Additionally, our studies extend those of Espeseth et al. (Genes Dev. 3:1647-1656, 1989), indicating a novel RAR function independent of the E/F domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3