Author:
Geliebter J,Nathenson S G
Abstract
The mechanism that generates spontaneous mutants of the Kb histocompatibility gene was analyzed. Nucleotide sequence analysis of four mutant genes (Kbm3, Kbm4, Kbm10, and Kbm11) revealed that each mutant K gene contains clustered, multiple nucleotide substitutions. Hybridization analyses of parental B6 genomic DNA and cloned class I genes with mutant-specific oligonucleotide probes, followed by sequence analyses, have identified major histocompatibility complex class I genes in the K, D, and Tla regions (K1, Db, and T5, respectively) that contain the exact sequences as substituted into mutant Kb genes. These data provide evidence for the hypothesis that the mutant Kb genes are generated by a microrecombination (gene conversion) mechanism that results in the transfer of small DNA segments from class I genes of all four regions of the major histocompatibility complex (K, D, Qa, and Tla) to Kb. Many of the nucleotides substituted into the mutant Kb genes were identical to those found in other naturally occurring K alleles such as Kd. Thus, we propose that the accumulation of microrecombination products within the K genes of a mouse population is responsible for the high sequence diversity among H-2 alleles.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献