Merging Taxonomy with Ecological Population Prediction in a Case Study of Vibrionaceae

Author:

Preheim Sarah P.1,Timberlake Sonia2,Polz Martin F.1

Affiliation:

1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

2. Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

ABSTRACT We synthesized population structure data from three studies that assessed the fine-scale distribution of Vibrionaceae among temporally and spatially distinct environmental categories in coastal seawater and animals. All studies used a dynamic model (AdaptML) to identify phylogenetically cohesive and ecologically distinct bacterial populations and their predicted habitats without relying on a predefined genetic cutoff or relationships to previously named species. Across the three studies, populations were highly overlapping, displaying similar phylogenetic characteristics (identity and diversity), and were predominantly congruent with taxonomic Vibrio species previously characterized as genotypic clusters by multilocus sequence analysis (MLSA). The environmental fidelity of these populations appears high, with 9 out of 12 reproducibly associating with the same predicted (micro)habitats when similar environmental categories were sampled. Overall, this meta-analysis provides information on the habitat predictability and structure of previously described species, demonstrating that MLSA-based taxonomy can, at least in some cases, serve to approximate ecologically cohesive populations.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference43 articles.

1. Microbial diversity and the genetic nature of microbial species

2. BreimanL. FriedmanJ. OlshenR. StoneC.. 1984. Classification and regression trees. CRC Press Boca Raton FL.

3. What are Bacterial Species?

4. Different species problems and their resolution;de Queiroz K;BioEssays,2005

5. Genomics and the bacterial species problem;Doolittle W. F.;Genome Biol.,2006

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3