Use of Redundant Exclusion PCR To Identify a Novel Bacillus thuringiensis Cry8 Toxin Gene from Pooled Genomic DNA

Author:

Zhang Fengjiao12,Shu Changlong2,Crickmore Neil3,Li Yanqiu2,Song Fuping2,Liu Chunqin4,Chen Zhibao1,Zhang Jie2

Affiliation:

1. College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China

3. School of Life Sciences, University of Sussex, Brighton, United Kingdom

4. Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, People's Republic of China

Abstract

ABSTRACT With the aim of optimizing the cloning of novel genes from a genomic pool containing many previously identified homologous genes, we designed a redundant exclusion PCR (RE-PCR) technique. In RE-PCR, a pair of generic amplification primers are combined with additional primers that are designed to specifically bind to redundant, unwanted genes that are a subset of those copied by the amplification primers. During RE-PCR, the specific primer blocks amplification of the full-length redundant gene. Using this method, we managed to clone a number of cry8 or cry9 toxin genes from a pool of Bacillus thuringiensis genomic DNA while excluding amplicons for cry9Da , cry9Ea , and cry9Eb . The method proved to be very efficient at increasing the number of rare genes in the resulting library. One such rare (and novel) cry8 -like gene was expressed, and the encoded toxin was shown to be toxic to Anomala corpulenta . IMPORTANCE Protein toxins from the bacterium Bacillus thuringiensis are being increasingly used as biopesticides against a wide range of insect pests, yet the search for new or improved toxins is becoming more difficult, as traditional methods for gene discovery routinely isolate previously identified clones. This paper describes an approach that we have developed to increase the success rate for novel toxin gene identification through reducing or eliminating the cloning of previously characterized genes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3