Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations

Author:

Blyton Michaela D. J.,Pi Hongfei,Vangchhia Belinda,Abraham Sam,Trott Darren J.,Johnson James R.,Gordon David M.

Abstract

ABSTRACTThe manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensalEscherichiacommunities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the differentEscherichia coliphylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similarEscherichiacommunities. TheEscherichiacommunities of backyard domestic poultry were phylogenetically distinct from theEscherichiacommunities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carriedEscherichiaisolates that possessed particular virulence-associated genes more often thanEscherichiaisolates from birds sampled in suburban and wilderness areas. TheEscherichiaisolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than theEscherichiaisolates from wild birds. We also detected a multidrug-resistantE. colistrain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3