Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal

Author:

Barr Jeremy J.12,Cook Andrew E.1,Bond Phillip L.12

Affiliation:

1. University of Queensland, Advanced Water Management Centre (AWMC), QLD 4072, Australia

2. Environmental Biotechnology Cooperative Research Centre, Sydney, New South Wales, Australia

Abstract

ABSTRACT Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% “ Candidatus Accumulibacter phosphatis,” and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% “ Candidatus Accumulibacter phosphatis” and 57.9% “ Candidatus Competibacter phosphatis,” among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3