Production of Nucleic Acid-Related Substances by Fermentation Processes

Author:

Furuya Akira1,Abe Shigeo1,Kinoshita Shukuo1

Affiliation:

1. Tokyo Research Laboratory, Kyowa Hakko Kogyo Co., Ltd., Machidashi, Tokyo, Japan

Abstract

Inosine-producing cultures were found among mutants resistant to 6-mercaptoguanine (6MG) derived from a 5′-inosinic acid (IMP)-producing strain, KY 13102, of Brevibacterium ammoniagenes. Inosine-producing ability was very frequent among the mutants resistant to a low concentration (10 to 50 μg/ml) of 6MG. The accumulation of inosine by strain KY 13714 was stimulated by a low concentration of adenine (25 mg/liter) but was depressed by high levels of adenine. The accumulation by strain KY 13714 was not inhibited by manganese ion but instead was stimulated by its excess, in contrast to IMP accumulation by KY 13102. Addition of hypoxanthine at an early stage of cultivation accelerated inosine accumulation. Furthermore, on addition of hypoxanthine and of a surface-activating agent after 48 hr of cultivation, the simultaneous accumulation of IMP and inosine was observed. A 9.3-mg amount of inosine per ml accumulated after 4 days of cultivation at 30 C. The inosine-producing mutant did not differ from the IMP-producing strain either in 5′ purine nucleotide degradation or in IMP formation from hypoxanthine. However, it was found to be completely devoid of purine nucleoside-degrading activity. The conversion of IMP accumulation to inosine can be explained by the lack of nucleosidedegrading activity. The relationship between deficiency of nucleoside-degrading activity and resistance to low levels of 6MG is discussed, and a new mechanism for 6MG resistance is presented.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3