Affiliation:
1. Equipe d'Accueil 2962, Laboratoire de Chimie-Physique et Minérale
2. Equipe d'Accueil 525, Laboratoire de Microbiologie
3. Equipe d'Accueil 525, Laboratoire de Pharmacocinétique et Pharmacie Clinique, Faculté de Pharmacie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
4. Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
Abstract
ABSTRACT
A series of 11 pyrrolo[1,2-
a
]quinoxaline derivatives, 1a to 1k, sharing structural analogies with omeprazole, a eukaryotic efflux pump inhibitor (EPI) used as an antiulcer agent, was synthesized. Their inhibitory effect was evaluated using
Staphylococcus aureus
strain SA-1199B overexpressing NorA. By determinations of the MIC of norfloxacin in the presence of these EPIs devoid of intrinsic antibacterial activity and used at 128 μg/ml, and by the checkerboard method, compound 1e (MIC decrease, 16-fold; fractional inhibitory concentration index [ΣFIC], 0.18) appeared to be more active than compounds 1b to 1d, reserpine, and omeprazole (MIC decrease, eightfold; ΣFIC, 0.31), followed by compounds 1a and 1f (MIC decrease, fourfold; ΣFIC, 0.37) and 1g to 1k (MIC decrease, twofold; ΣFIC, 0.50 to 0.56). By time-kill curves combining norfloxacin (1/4 MIC) and the most efficient EPIs (128 μg/ml), compound 1e persistently restored the bactericidal activity of norfloxacin (inoculum reduction, 3 log
10
CFU/ml at 8 and 24 h), compound 1f led to a delayed but progressive decrease in the number of viable cells, and compounds 1b to 1d and omeprazole acted synergistically (inoculum reduction, 3 log
10
CFU/ml at 8 h but further regrowth), while compound 1a and reserpine slightly enhanced norfloxacin activity. The bacterial uptake of norfloxacin monitored by high-performance liquid chromatography confirmed that compounds 1a to 1f increased antibiotic accumulation, as did reserpine and omeprazole. Since these EPIs did not disturb the Δψ and ΔpH, they might directly interact with the pump. A structure-activity relationships study identified the benzimidazole nucleus of omeprazole as the main structural element involved in efflux pump inhibition and highlighted the critical role of the chlorine substituents in the stability and efficiency of compounds 1e to 1f. However, further pharmacomodulation is required to obtain therapeutically applicable derivatives.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献