Human Immunodeficiency Virus Type 1 Is Trapped by Acidic but Not by Neutralized Human Cervicovaginal Mucus

Author:

Lai Samuel K.1,Hida Kaoru2,Shukair Shetha3,Wang Ying-Ying2,Figueiredo Anna3,Cone Richard45,Hope Thomas J.3,Hanes Justin125

Affiliation:

1. Departments of Chemical and Biomolecular Engineering

2. Biomedical Engineering

3. Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611

4. Biophysics

5. Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218

Abstract

ABSTRACT To reliably infect a primate model for human immunodeficiency virus (HIV), ∼10,000-fold more virus must be delivered vaginally than intravenously. However, the vaginal mechanisms that help protect against HIV are poorly understood. Here, we report that human cervicovaginal mucus (CVM), obtained from donors with normal lactobacillus-dominated vaginal flora, efficiently traps HIV, causing it to diffuse more than 1,000-fold more slowly than it does in water. Lactobacilli acidify CVM to pH ∼4 by continuously producing lactic acid. At this acidic pH, we found that lactic acid, but not HCl, abolished the negative surface charge on HIV without lysing the virus membrane. In contrast, in CVM neutralized to pH 6 to 7, as occurs when semen temporarily neutralizes the vagina, HIV maintained its native surface charge and diffused only 15-fold more slowly than it would in water. Thus, methods that can maintain both a high lactic acid content and acidity for CVM during coitus may contribute to both vaginal and penile protection by trapping HIV before it can reach target cells. Our results reveal that CVM likely plays an important but currently unappreciated role in decreasing the rate of HIV sexual transmission.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3