Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli

Author:

Hultgren S J,Porter T N,Schaeffer A J,Duncan J L

Abstract

Phase variation of type 1 pili (fimbriae) was studied during the in vivo growth of Escherichia coli in two animal models. In the first, a heavily piliated urinary tract isolate (strain 149) was placed in 1-cm polypropylene chambers sealed with 0.22-micron-pore-size filters. The chambers were surgically implanted intraperitoneally in mice and recovered at various times. Piliation, as determined by electron microscopy and by measuring the minimum number of bacteria needed to produce mannose-sensitive hemagglutination, gradually decreased, and by day 5, most of the organisms were nonpiliated. In the second model, piliated and nonpiliated E. coli phase variants were inoculated into the bladders of BALB/c mice via urinary catheters, and their fate in the lower urinary tract was studied. Viable counts of bladder homogenates revealed that piliated phase variants were significantly more effective in colonizing the bladder urothelium than were their nonpiliated counterparts. Specific antibody to type 1 pili prevented colonization by the piliated organisms. After inoculation of piliated variants, the bladder-associated bacteria gave rise to approximately 80% mannose-sensitive hemagglutination-positive colonies, and immunocytochemistry of bladder lavages revealed large numbers of type 1 piliated bacteria adhering to the bladder transitional cells. Electron microscopy confirmed the presence of piliated bacteria in association with the bladder urothelium. The urine of these mice, whose bladders were colonized with piliated bacteria, frequently showed no growth, and when bacteria were present, strain 149 yielded less than 30% hemagglutination-positive colonies. The results suggest that for some E. coli strains, phase variation may be a factor in determining the fate of the E. coli in the urinary tract and that the urine may not necessarily reflect the bacteriologic state of the bladder mucosa.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3