Emergence of Resistance to Atovaquone-Proguanil in Malaria Parasites: Insights from Computational Modeling and Clinical Case Reports

Author:

Cottrell Gilles,Musset Lise,Hubert Véronique,Le Bras Jacques,Clain Jérôme

Abstract

ABSTRACTThe usefulness of atovaquone-proguanil (AP) as an antimalarial treatment is compromised by the emergence of atovaquone resistance during therapy. However, the origin of the parasite mitochondrial DNA (mtDNA) mutation conferring atovaquone resistance remains elusive. Here, we report a patient-based stochastic model that tracks the intrahost emergence of mutations in the multicopy mtDNA during the first erythrocytic parasite cycles leading to the malaria febrile episode. The effect of mtDNA copy number, mutation rate, mutation cost, and total parasite load on the mutant parasite load per patient was evaluated. Computer simulations showed that almost any infected patient carried, after four to seven erythrocytic cycles,de novomutant parasites at low frequency, with varied frequencies of parasites carrying varied numbers of mutant mtDNA copies. A large interpatient variability in the size of this mutant reservoir was found; this variability was due to the different parameters tested but also to the relaxed replication and partitioning of mtDNA copies during mitosis. We also report seven clinical cases in which AP-resistant infections were treated by AP. These provided evidence that parasiticidal drug concentrations against AP-resistant parasites were transiently obtained within days after treatment initiation. Altogether, these results suggest that each patient carries new mtDNA mutant parasites that emerge before treatment but are killed by high starting drug concentrations. However, because the size of this mutant reservoir is highly variable from patient to patient, we propose that some patients fail to eliminate all of the mutant parasites, repeatedly producingde novoAP treatment failures.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3