A Novel Archaeal Alanine Dehydrogenase Homologous to Ornithine Cyclodeaminase and μ-Crystallin

Author:

Schröder Imke1,Vadas Alexander2,Johnson Eric1,Lim Sierin2,Monbouquette Harold G.2

Affiliation:

1. Department of Microbiology, Immunology and Molecular Genetics

2. Department of Chemical Engineering, University of California, Los Angeles, California

Abstract

ABSTRACT A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus . AlaDH catalyzed the reversible, NAD + -dependent deamination of l -alanine to pyruvate and NH 4 + . NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The K m values for l -alanine, NAD + , pyruvate, NADH, and NH 4 + were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82°C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25°C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90°C. At 25°C in the presence of this salt solution, the enzyme was ∼100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-μ-crystallin family of enzymes. Similar to the μ-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human μ-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3