Identification of a Reactivating Factor for Adenosylcobalamin-Dependent Ethanolamine Ammonia Lyase

Author:

Mori Koichi1,Bando Reiko1,Hieda Naoki1,Toraya Tetsuo1

Affiliation:

1. Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-naka, Okayama, Japan

Abstract

ABSTRACT The holoenzyme of adenosylcobalamin-dependent ethanolamine ammonia lyase undergoes suicidal inactivation during catalysis as well as inactivation in the absence of substrate. The inactivation involves the irreversible cleavage of the Co-C bond of the coenzyme. We found that the inactivated holoenzyme undergoes rapid and continuous reactivation in the presence of ATP, Mg 2+ , and free adenosylcobalamin in permeabilized cells (in situ), homogenate, and cell extracts of Escherichia coli . The reactivation was observed in the permeabilized E. coli cells carrying a plasmid containing the E. coli eut operon as well. From coexpression experiments, it was demonstrated that the eutA gene, adjacent to the 5′ end of ethanolamine ammonia lyase genes ( eutBC ), is essential for reactivation. It encodes a polypeptide consisting of 467 amino acid residues with predicted molecular weight of 49,599. No evidence was obtained that shows the presence of the auxiliary protein(s) potentiating the reactivation or associating with EutA. It was demonstrated with purified recombinant EutA that both the suicidally inactivated and O 2 -inactivated holoethanolamine ammonia lyase underwent rapid reactivation in vitro by EutA in the presence of adenosylcobalamin, ATP, and Mg 2+ . The inactive enzyme-cyanocobalamin complex was also activated in situ and in vitro by EutA under the same conditions. Thus, it was concluded that EutA is the only component of the reactivating factor for ethanolamine ammonia lyase and that reactivation and activation occur through the exchange of modified coenzyme for free intact adenosylcobalamin.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3