Temporal Analysis of Coxiella burnetii Morphological Differentiation

Author:

Coleman Sherry A.1,Fischer Elizabeth R.1,Howe Dale1,Mead David J.1,Heinzen Robert A.1

Affiliation:

1. Coxiella Pathogenesis Unit, Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana

Abstract

ABSTRACT Coxiella burnetii undergoes a poorly defined developmental cycle that generates morphologically distinct small-cell variants (SCV) and large-cell variants (LCV). We developed a model to study C. burnetii morphogenesis that uses Vero cells synchronously infected with homogeneous SCV (Nine Mile strain in phase II) harvested from aged infected cell cultures. A time course transmission electron microscopic analysis over 8 days of intracellular growth was evaluated in conjunction with one-step growth curves to correlate morphological differentiations with growth cycle phase. Lag phase occurred during the first 2 days postinfection (p.i.) and was primarily composed of SCV-to-LCV morphogenesis. LCV forms predominated over the next 4 days, during which exponential growth was observed. Calculated generation times during exponential phase were 10.2 h (by quantitative PCR assay) and 11.7 h (by replating fluorescent focus-forming unit assay). Stationary phase began at approximately 6 days p.i. and coincided with the reappearance of SCV, which increased in number at 8 days p.i. Quantitative reverse transcriptase-PCR demonstrated maximal expression of scvA , which encodes an SCV-specific protein, at 8 days p.i., while immunogold transmission electron microscopy revealed degradation of ScvA throughout lag and exponential phases, with increased expression observed at the onset of stationary phase. Collectively, these results indicate that the overall growth cycle of C. burnetii is characteristic of a closed bacterial system and that the replicative form of the organism is the LCV. The experimental model described in this report will allow a global transcriptome and proteome analysis of C. burnetii developmental forms.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3