Partial Functional Replacement of CymA by SirCD in Shewanella oneidensis MR-1

Author:

Cordova Carmen D.1,Schicklberger Marcus F. R.1,Yu Yang1,Spormann Alfred M.21

Affiliation:

1. Civil & Environmental Engineering, Stanford University, Stanford, California

2. Departments of Chemical Engineering, Stanford University, Stanford, California

Abstract

ABSTRACT The gammaproteobacterium Shewanella oneidensis MR-1 utilizes a complex electron transfer network composed primarily of c -type cytochromes to respire under anoxic conditions a variety of compounds, including fumarate, nitrate, and dimethyl sulfoxide (DMSO), in addition to the minerals Fe(III) and Mn(IV). Central to several respiratory pathways is CymA, a cytoplasmic membrane-bound tetraheme c -type cytochrome that functions as the major hydroquinone dehydrogenase. To investigate functional redundancy and plasticity in S. oneidensis MR-1 electron transport, we isolated Δ cymA suppressor mutants and characterized one biochemically and genetically. Interestingly, in the characterized Δ cymA suppressor mutant, respiration of fumarate, ferric citrate, and DMSO was restored but that of nitrate was not. The suppression was found to be due to transcriptional activation of sirC and sirD , encoding a periplasmic iron sulfur protein and an integral membrane hydroquinone dehydrogenase, respectively. Biochemical in vitro reconstitution experiments confirmed electron transport between formate and fumarate via fumarate reductase by suppressor membrane fractions. The suppression was found to be caused by insertion of an ISSod1 element upstream of the sirCD transcriptional start site, generating a novel, constitutively active hybrid promoter. This work revealed that adaptation of an alternative electron transfer pathway from quinol to terminal oxidoreductases independent of CymA occurs rapidly in S. oneidensis MR-1.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3