Site-Specific Release of Nascent Chains from Ribosomes at a Sense Codon

Author:

Doronina Victoria A.1,Wu Cheng2,de Felipe Pablo3,Sachs Matthew S.24,Ryan Martin D.3,Brown Jeremy D.1

Affiliation:

1. RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom

2. Department of Environmental & Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006

3. School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom

4. Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97201

Abstract

ABSTRACT “2A” oligopeptides are autonomous elements containing a D(V/I)EXNPGP motif at the C terminus. Protein synthesis from an open reading frame containing an internal 2A coding sequence yields two separate polypeptides, corresponding to sequences up to and including 2A and those downstream. We show that the 2A reaction occurs in the ribosomal peptidyltransferase center. Ribosomes pause at the end of the 2A coding sequence, over the glycine and proline codons, and the nascent chain up to and including this glycine is released. Translation-terminating release factors eRF1 and eRF3 play key roles in the reaction. On the depletion of eRF1, a greater proportion of ribosomes extend through the 2A coding sequence, yielding the full-length protein. In contrast, impaired eRF3 GTPase activity leads to many ribosomes failing to translate beyond 2A. Further, high-level expression of a 2A peptide-containing protein inhibits the growth of cells compromised for release factor activity and leads to errors in stop codon recognition. We propose that the nascent 2A peptide interacts with ribosomes to drive a highly unusual and specific “termination” reaction, despite the presence of a proline codon in the A site. After this, the majority of ribosomes continue translation, generating the separate downstream product.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3