Quantifying Microbial Utilization of Petroleum Hydrocarbons in Salt Marsh Sediments by Using the 13 C Content of Bacterial rRNA

Author:

Pearson Ann1,Kraunz Kimberly S.1,Sessions Alex L.2,Dekas Anne E.12,Leavitt William D.1,Edwards Katrina J.3

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, Massachusetts 02138

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125

3. Department of Biological Sciences, University of Southern California, Los Angeles, California 90089

Abstract

ABSTRACT Natural remediation of oil spills is catalyzed by complex microbial consortia. Here we took a whole-community approach to investigate bacterial incorporation of petroleum hydrocarbons from a simulated oil spill. We utilized the natural difference in carbon isotopic abundance between a salt marsh ecosystem supported by the 13 C-enriched C 4 grass Spartina alterniflora and 13 C-depleted petroleum to monitor changes in the 13 C content of biomass. Magnetic bead capture methods for selective recovery of bacterial RNA were used to monitor the 13 C content of bacterial biomass during a 2-week experiment. The data show that by the end of the experiment, up to 26% of bacterial biomass was derived from consumption of the freshly spilled oil. The results contrast with the inertness of a nearby relict spill, which occurred in 1969 in West Falmouth, MA. Sequences of 16S rRNA genes from our experimental samples also were consistent with previous reports suggesting the importance of Gamma - and Deltaproteobacteria and Firmicutes in the remineralization of hydrocarbons. The magnetic bead capture approach makes it possible to quantify uptake of petroleum hydrocarbons by microbes in situ. Although employed here at the domain level, RNA capture procedures can be highly specific. The same strategy could be used with genus-level specificity, something which is not currently possible using the 13 C content of biomarker lipids.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3