Human Cytomegalovirus Induces an Atypical Activation of Akt To Stimulate the Survival of Short-Lived Monocytes

Author:

Cojohari Olesea1,Peppenelli Megan A.1,Chan Gary C.1ORCID

Affiliation:

1. Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, New York, USA

Abstract

ABSTRACT Human cytomegalovirus (HCMV) is a pervasive herpesvirus responsible for significant morbidity and mortality among immunodeficient/naive hosts. Following a primary HCMV infection, circulating blood monocytes mediate the systemic spread of the virus. Extending the short 48-h life span of monocytes is critical to the viral dissemination process, as these blood-borne cells are nonpermissive for virus replication until they are fully differentiated into macrophages. Here, we show that HCMV glycoprotein gB binding to cellular epidermal growth factor receptor (EGFR) during HCMV entry initiated a rapid (within 15 min) activation of the apoptosis suppressor Akt, which was maintained through 72 h. The virus-induced activation of Akt was more robust than that with the normal myeloid growth factor macrophage colony-stimulating factor (M-CSF) and was essential for infected monocytes to bypass the 48-h viability checkpoint. Activation of phosphoinositide 3-kinase (PI3K) following EGFR engagement by HCMV mediated the phosphorylation of Akt. Moreover, HCMV entry drove a switch away from the PI3K p110δ isoform, which was required for the viability of uninfected monocytes, to the p110β isoform in order to facilitate the Akt-dependent prosurvival state within infected cells. Simultaneously, in contrast to M-CSF, HCMV promoted a rapid increase in SH2 domain-containing inositol 5-phosphatase 1 (SHIP1) expression, leading to signaling through a noncanonical Akt activation pathway. To ensure maximum Akt activity, HCMV also induced an early phosphorylation-dependent inactivation of the negative regulator phosphatase and tensin homolog. Overall, our data indicate that HCMV hijacks the upstream Akt signaling network to induce a nontraditional activation of Akt and subsequently a prosurvival decision at the 48-h cell fate checkpoint, a vital step for HCMV's dissemination and persistence strategy. IMPORTANCE HCMV is found throughout the world with a prevalence of 55 to 100% within the human population. HCMV infection is generally asymptomatic in immunocompetent or naive individuals but is a significant cause of morbidity and mortality among the immunocompromised. Widespread organ inflammation is associated with symptomatic infections, which is a direct consequence of the viral dissemination strategy. Inflammatory peripheral blood monocytes facilitate the spread of HCMV. However, HCMV must subvert the naturally short life span of monocytes. In this work, we demonstrate that HCMV induces the activation of Akt, an antiapoptotic protein, in a manner distinct from that of normal myeloid growth factors. Moreover, we decipher how HCMV dysregulates the upstream Akt signaling network during viral entry to promote an Akt-dependent prosurvival state following infection. Delineation of the virus-specific mechanisms that regulate cellular prosurvival pathways in order to drive the survival of HCMV-infected monocytes is important to identifying new anti-HCMV therapeutic targets.

Funder

Sinsheimer Scholar Award

HHS | NIH | National Institute of Allergy and Infectious Diseases

American Heart Association

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3