Observations on the Role of TcdE Isoforms in Clostridium difficile Toxin Secretion

Author:

Govind Revathi1,Fitzwater Leah1,Nichols Rebekah1

Affiliation:

1. Division of Biology, Kansas State University, Manhattan, Kansas, USA

Abstract

ABSTRACT Clostridium difficile is a major nosocomial pathogen and the principal causative agent of antibiotic-associated diarrhea. The toxigenic C. difficile strains that cause disease secrete virulence factors, toxin A and toxin B, that cause colonic injury and inflammation. C. difficile toxins have no export signature and are secreted by an unusual mechanism that involves TcdE, a holin-like protein. We isolated a TcdE mutant of the epidemic R20291 strain with impaired toxin secretion, which was restored by complementation with functional TcdE. In the TcdE open reading frame (ORF), we identified three possible translation start sites; each translated isoform may play a specific role in TcdE-controlled toxin release. We created plasmid constructs that express only one of the three TcdE isoforms and complemented the TcdE mutant with these isoforms. Western blot analysis of the complemented strains demonstrated that TcdE is translated efficiently from the start codon at the 25th and 27th positions in the predicted ORF, producing proteins with 142 amino acids (TcdE 142 ) and 140 amino acids (TcdE 140 ), respectively. TcdE 166 was not detected when expressed from its own ribosomal binding site (RBS). The effects of all three TcdE isoforms on C. difficile cell viability and toxin release were determined. Among the three isoforms, overexpression of TcdE 166 and TcdE 142 had a profound effect on cell viability compared to the TcdE 140 isoform. Similarly, TcdE 166 and TcdE 142 facilitated toxin release more efficiently than did TcdE 140 . The importance of these variations among TcdE isoforms and their role in toxin release are discussed. IMPORTANCE C. difficile is a nosocomial pathogen that has become the most prevalent cause of antibiotic-associated diarrhea in North America and in several countries in Europe. Most strains of C. difficile produce two high-molecular-weight toxins that are regarded as the primary virulence factors. The mechanism by which these large toxins are secreted from bacterial cells is not yet clear but involves TcdE, a holin-like protein. In this work, we show that TcdE could be translated from three different start codons, resulting in the production of three TcdE isoforms. Furthermore, we investigated the role of these isoforms in toxin release and cell lysis in C. difficile . An understanding of TcdE-dependent toxin secretion may be helpful for the development of strategies for preventing and treating C. difficile infections.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3