Affiliation:
1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA.
Abstract
The mechanisms allowing vaccinia virus to spread from cell to cell are incompletely understood. The A34R gene of vaccinia virus encodes a glycoprotein that is localized in the outer membranes of extracellular virions. The small-plaque phenotype of an A34R deletion mutant was similar to that of mutants with deletions in other envelope genes that fail to produce extracellular vaccinia virions. Transmission electron microscopy, however, revealed that the A34R mutant produced numerous extracellular particles that were labeled with antibodies to other outer-envelope proteins and with protein A-colloidal gold. Fluorescence and scanning electron microscopy indicated that expression of the A34R protein was necessary for detection of vaccinia virus-induced actin tails, which provide motility to the intracellular enveloped form of vaccinia virus, and of virus-tipped specialized microvilli that project from the cell. The ability of vaccinia virus-infected cells to form syncytia after a brief exposure to a pH below 6, known as fusion from within, failed to occur in the absence of expression of the A34R protein; nevertheless, purified A34R- virions were capable of mediating low-pH-induced fusion from without. The present study provides genetic and microscopic evidence for the involvement of a specific viral protein in the formation or stability of actin-containing microvilli and for a role of these structures in cell-to-cell spread rather than in formation of extracellular virions.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献