Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock

Author:

Nikolich M P1,Hong G1,Shoemaker N B1,Salyers A A1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana 61801.

Abstract

Though numerous studies have shown that gene transfer occurs between distantly related bacterial genera under laboratory conditions, the frequency and breadth of horizontal transfer events in nature remain unknown. Previous evidence for natural intergeneric transfers came from studies of genes in human pathogens, bacteria that colonize the same host. We present evidence that natural transfer of a tetracycline resistance gene, tetQ, has occurred between bacterial genera that normally colonize different hosts. A DNA sequence comparative approach was taken to examine the extent of horizontal tetQ dissemination between species of Bacteroides, the predominant genus of the human colonic microflora, and between species of Bacteroides and of the distantly related genus Prevotella, a predominant genus of the microflora of the rumens and intestinal tracts of farm animals. Virtually identical tetQ sequences were found in a number of isolate pairs differing in taxonomy and geographic origin, indicating that extensive natural gene transmission has occurred. Among the exchange events indicated by the evidence was the very recent transfer of an allele of tetQ usually found in Prevotella spp. to a Bacteroides fragilis strain.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3