Biosynthesis of phospholipids in Bacillus megaterium

Author:

Langley K E,Yaffe M P,Kennedy E P

Abstract

Information on the biosynthesis of phospholipids in bacteria has been derived principally from the study of Escherichia coli and other gram-negative organisms. We have now carried out a detailed study of the pathways of phospholipid biosynthesis in the gram-positive organism Bacillus megarterium KM in relation to investigations on the biogenesis of lipid asymmetry in membranes. Radioactive precursors such as 32Pi and [3H]palmitate initially label phosphatidylethanolamine much more than phosphatidylglycerol. This raised the possibility that phosphatidylglycerol may be the precursor of phosphatidylethanolamine in a pathway different from that in E. coli. Phosphatidylglycerol is known to be highly reactive metabolically, since it functions as a donor of phosphatidyl residues in the synthesis of cardiolipin and as a donor of glycerophosphate residues in the synthesis of teichoic acids and of membrane-derived oligosaccharides. The large pool of phosphatidylglycerol would dilute the radioactive isotope, slowing the initial rate of incorporation of label into phosphatidylethanolamine. However, assays of cell-free extracts revealed no evidence for such a novel pathway. Instead, phosphatidylserine synthase (cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase) and phosphatidylserine decarboxylase were detected, although at low levels. These results suggest that the pathway in B. megaterium is the same as that in E. coli in which phosphatidylserine, derived from cytidine 5'-diphosphate-diglyceride, is the precursor of phosphatidylethanolamine. The lag in the appearance of label in phosphatidylethanolamine appears to be the effect of a considerable pool of phosphatidylserine (ca. 5 to 10% of the total phospholipid) in certain strains of B. megaterium. The lag in labeling can be correlated with the size of the pool of phosphatidylserine. Pulse-chase experiments in vivo support the conclusion that in B. megaterium phosphatidylserine is not derived from phosphatidylglycerol. Rates of turnover of the membrane phospholipids of B. megaterium have also been studied.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3