Affiliation:
1. Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, Washington, DC 20375
2. NOVA Research Incorporated, Alexandria, Virginia 22308
3. Department of Defense Center for Deployment Health Research, Naval Health Research Center, San Diego, California 92186
Abstract
ABSTRACT
Simultaneous testing for detection of infectious pathogens that cause similar symptoms (e.g., acute respiratory infections) is invaluable for patient treatment, outbreak prevention, and efficient use of antibiotic and antiviral agents. In addition, such testing may provide information regarding possible coinfections or induced secondary infections, such as virally induced bacterial infections. Furthermore, in many cases, detection of a pathogen requires more than genus/species-level resolution, since harmful agents (e.g., avian influenza virus) are grouped with other, relatively benign common agents, and for every pathogen, finer resolution is useful to allow tracking of the location and nature of mutations leading to strain variations. In this study, a previously developed resequencing microarray that has been demonstrated to have these capabilities was further developed to provide individual detection sensitivity ranging from 10
1
to 10
3
genomic copies for more than 26 respiratory pathogens while still retaining the ability to detect and differentiate between close genetic neighbors. In addition, the study demonstrated that this system allows unambiguous and reproducible sequence-based strain identification of the mixed pathogens. Successful proof-of-concept experiments using clinical specimens show that this approach is potentially very useful for both diagnostics and epidemic surveillance.
Publisher
American Society for Microbiology
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献