Mechanism Studies of Suppressor-Gene Action

Author:

Brody Stuart1,Yanofsky Charles1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California

Abstract

Brody, Stuart (Stanford University, Stanford, Calif.), and Charles Yanofsky . Mechanism studies of suppressor-gene action. J. Bacteriol. 90: 687–695. 1965.—Mutations which change the primary structure of the A protein of the tryptophan synthetase of Escherichia coli can be reversed by allele-specific suppressor mutations. Normally, the suppressors of a particular A mutant lead to the appearance of small amounts of a wild-type-like A protein (su-A protein), in addition to the cross-reacting material antigenically similar to the normal A protein (CRM-A protein). In some cases, the particular ratio of su-A protein to CRM-A protein, indicative of a given suppressor gene, was increased when that suppressor gene was transduced into a different strain, such as a K-12 Hfr stock of E. coli . In these cases, there was a general correlation between an increased ratio and a marked instability of the suppressor gene. However, stable suppressed stocks were isolated in the Hfr strain, which also produced a high proportion of su-A protein. The ratios of su-A protein to CRM-A protein remained relatively constant under conditions of tryptophan repression in three different suppressor stocks, suggesting that the formation of each of the su-A proteins does not involve the interaction of a CRM-A protein with any other cellular constituent. It would appear, then, that the changes in the primary structure of the A protein which lead to the formation of the su-A proteins are determined before or during, but not after, the synthesis of the polypeptide chain. The specificity of amino acid activation was investigated in strains bearing one of the suppressor genes. These studies failed to reveal any significant alteration in the amino acyl ribonucleic acid (RNA) synthetases or the transfer RNA molecules for arginine, glycine, histidine, and tyrosine.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3