Isolation and Characterization of Acyl Coenzyme A Carboxylases from Mycobacterium tuberculosis and Mycobacterium bovis , Which Produce Multiple Methyl-Branched Mycocerosic Acids

Author:

Rainwater David L.1,Kolattukudy P. E.1

Affiliation:

1. Institute of Biological Chemistry and Biochemistry/Biophysics Program, Washington State University, Pullman, Washington 99164

Abstract

Mycobacterium tuberculosis H37Ra and M. bovis BCG produce multiple methyl-branched fatty acids called mycocerosic acids, presumably from methyl-malonyl coenzyme A (CoA). An acyl-CoA carboxylase was isolated from these organisms at a 30 to 50% yield by a purification procedure involving ammonium sulfate fractionation, gel filtration, and affinity chromatography with a monomeric avidin–Sepharose 4B-CL gel with d -biotin as the eluant. Sodium dodecyl sulfate electrophoresis and avidin binding indicate that each enzyme is probably composed of two dissimilar subunits with a covalently bound biotin in the larger subunit. The enzyme preparations from H37Ra and BCG had specific activities of 2.1 and 5.5 μmol min −1 mg −1 , respectively, when propionyl-CoA was the substrate. The enzymes from the two species displayed striking similarities in their kinetic parameters. They showed maximal activity at pH 8.0 when propionyl-CoA was the substrate, but displayed a relatively broad pH-activity profile when acetyl-CoA was the substrate. With both substrates, potassium phosphate buffer gave maximal activity. Apparent K m values for propionyl-CoA, ATP, Mg 2+ , and NaHCO 3 were 70 μM, 100 μM, 5.4 mM, and 2.2 mM, respectively. The enzyme also carboxylated acetyl-CoA and butyryl-CoA, and high-performance liquid chromatography showed the expected products of carboxylation. However, with these substrates, the K m was higher and the V max was lower than those of propionyl-CoA. The enzyme was shown to be stereospecific, synthesizing exclusively ( S )-methylmalonyl-CoA from propionyl-CoA. No other acyl-CoA carboxylase was observed during the purification procedure, indicating that the present carboxylase may provide malonyl-CoA for the synthesis of n -fatty acids as well as methylmalonyl-CoA for the synthesis of mycocerosic acids.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3