Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing

Author:

Lloyd R E1,Grubman M J1,Ehrenfeld E1

Affiliation:

1. Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132.

Abstract

Infection of HeLa cells by poliovirus results in an abrupt inhibition of host cell protein synthesis. It is thought that the mechanism of this inhibition involves proteolytic cleavage of the p220 component of the cap-binding protein complex, thereby causing functional inactivation of the cap-binding protein complex and preventing capped (cellular) mRNAs from binding ribosomes. Current data suggest that the viral proteinase 2A indirectly induces p220 cleavage via alteration or activation of a second proteinase of cellular origin. We present evidence that translation of poliovirus proteinase 2A sequences in vitro activates p220 cleavage. We have also aligned published picornavirus 2A amino acid sequences for maximum homology, and we show that the picornaviruses can be divided into two classes based on the presence or absence of a highly conserved 18-amino acid sequence in the carboxy-terminal portion of 2A. This conserved 2A sequence is homologous with the active site of the cysteine proteinase 3C common to all picornaviruses. We show that picornaviruses which contain the putative 2A active site sequence (e.g., enteroviruses and rhinoviruses) will induce cleavage of p220 in vivo. Conversely, we show that two cardioviruses (encephalomyocarditis virus and Theiler's encephalomyelitis virus) do not encode this putative proteinase sequence in the 2A region and do not induce cleavage of p220 in vivo. The foot-and-mouth disease virus (FMDV) 2A sequence represents an apparent deletion and consists of only 16 amino acids, most homologous with the carboxy terminus of the cardiovirus 2A sequence. It does not contain the putative cysteine proteinase active site. However, FMDV infection induces complete cleavage of BK cell p220, and translation of FMDV RNA in vitro induces an activity that cleaves HeLa cell p220. The data predict that an alternate FMDV viral protease is responsible for the induction of p220 cleavage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference40 articles.

1. Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families;Argos P.;Nucleic Acids Res.,1984

2. Poliovirus mutant that does not selectively inhibit host cell protein synthesis;Bernstein H. D.;Mol. Cell. Biol.,1985

3. Internal homology in the primary structure of the poliovirus polyprotein: the possibility of existence of two viral proteinases;Blinov V. M.;Lectures Acad. Sci. USSR,1985

4. Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14;Callahan P. L.;Proc. Natl. Acad. Sci. USA,1985

5. Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses;Cohen J. I.;J. Virol.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3