Simple and Portable Magnetic Immunoassay for Rapid Detection and Sensitive Quantification of Plant Viruses

Author:

Rettcher Stefanie1,Jungk Felicitas1,Kühn Christoph1,Krause Hans-Joachim2,Nölke Greta1,Commandeur Ulrich3,Fischer Rainer13,Schillberg Stefan1,Schröper Florian1

Affiliation:

1. Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany

2. Peter Grünberg Institute PGI-8, Research Center Jülich, Jülich, Germany

3. Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany

Abstract

ABSTRACT Plant pathogens cause major economic losses in the agricultural industry because late detection delays the implementation of measures that can prevent their dissemination. Sensitive and robust procedures for the rapid detection of plant pathogens are therefore required to reduce yield losses and the use of expensive, environmentally damaging chemicals. Here we describe a simple and portable system for the rapid detection of viral pathogens in infected plants based on immunofiltration, subsequent magnetic detection, and the quantification of magnetically labeled virus particles. Grapevine fanleaf virus (GFLV) was chosen as a model pathogen. Monoclonal antibodies recognizing the GFLV capsid protein were immobilized onto immunofiltration columns, and the same antibodies were linked to magnetic nanoparticles. GFLV was quantified by immunofiltration with magnetic labeling in a double-antibody sandwich configuration. A magnetic frequency mixing technique, in which a two-frequency magnetic excitation field was used to induce a sum frequency signal in the resonant detection coil, corresponding to the virus concentration within the immunofiltration column, was used for high-sensitivity quantification. We were able to measure GFLV concentrations in the range of 6 ng/ml to 20 μg/ml in less than 30 min. The magnetic immunoassay could also be adapted to detect other plant viruses, including Potato virus X and Tobacco mosaic virus , with detection limits of 2 to 60 ng/ml.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3