Varicella-Zoster Virus Downregulates Programmed Death Ligand 1 and Major Histocompatibility Complex Class I in Human Brain Vascular Adventitial Fibroblasts, Perineurial Cells, and Lung Fibroblasts

Author:

Jones Dallas1,Blackmon Anna1,Neff C. Preston2,Palmer Brent E.2,Gilden Don13,Badani Hussain1,Nagel Maria A.1

Affiliation:

1. Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA

2. Department of Medicine, Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA

3. Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

Abstract

ABSTRACT Varicella-zoster virus (VZV) vasculopathy produces stroke, giant cell arteritis, and granulomatous aortitis, and it develops after virus reactivates from ganglia and spreads transaxonally to arterial adventitia, resulting in persistent inflammation and pathological vascular remodeling. The mechanism(s) by which inflammatory cells persist in VZV-infected arteries is unknown; however, virus-induced dysregulation of programmed death ligand 1 (PD-L1) may play a role. Specifically, PD-L1 can be expressed on virtually all nucleated cells and suppresses the immune system by interacting with the programmed cell death protein receptor 1, found exclusively on immune cells; thus, downregulation of PD-L1 may promote inflammation, as seen in some autoimmune diseases. Both flow cytometry and immunofluorescence analyses to test whether VZV infection of adventitial cells downregulates PD-L1 showed decreased PD-L1 expression in VZV-infected compared to mock-infected human brain vascular adventitial fibroblasts (HBVAFs), perineural cells (HPNCs), and fetal lung fibroblasts (HFLs) at 72 h postinfection. Quantitative RT-PCR analyses showed no change in PD-L1 transcript levels between mock- and VZV-infected cells, indicating a posttranscriptional mechanism for VZV-mediated downregulation of PD-L1. Flow cytometry analyses showed decreased major histocompatibility complex class I (MHC-I) expression in VZV-infected cells and adjacent uninfected cells compared to mock-infected cells. These data suggest that reduced PD-L1 expression in VZV-infected adventitial cells contribute to persistent vascular inflammation observed in virus-infected arteries from patients with VZV vasculopathy, while downregulation of MHC-I prevents viral clearance. IMPORTANCE Here, we provide the first demonstration that VZV downregulates PD-L1 expression in infected HBVAFs, HPNCs, and HFLs, which, together with the noted VZV-mediated downregulation of MHC-I, might foster persistent inflammation in vessels, leading to pathological vascular remodeling during VZV vasculopathy and persistent inflammation in infected lungs to promote subsequent infection of T cells and hematogenous virus spread. Identification of a potential mechanism by which persistent inflammation in the absence of effective viral clearance occurs in VZV vasculopathy and VZV infection of the lung is a step toward targeted therapy of VZV-induced disease.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3