Determination of Antibiotic Efficacy against Bacillus anthracis in a Mouse Aerosol Challenge Model

Author:

Heine Henry S.1,Bassett Jennifer1,Miller Lynda1,Hartings Justin M.2,Ivins Bruce E.1,Pitt M. Louise2,Fritz David1,Norris Sarah L.3,Byrne W. Russell1

Affiliation:

1. Division of Bacteriology

2. Division of Aerobiology

3. Biostatistical Services, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011

Abstract

ABSTRACT An anthrax spore aerosol infection mouse model was developed as a first test of in vivo efficacy of antibiotics identified as active against Bacillus anthracis . Whole-body, 50% lethal dose (LD 50 ) aerosol challenge doses in a range of 1.9 × 10 3 to 3.4 × 10 4 CFU with spores of the fully virulent Ames strain were established for three inbred and one outbred mouse strain (A/J, BALB/c, C57BL, and Swiss Webster). The BALB/c strain was further developed as a model for antibiotic efficacy. Time course microbiological examinations of tissue burdens in mice after challenge showed that spores could remain dormant in the lungs while vegetative cells disseminated to the mediastinal lymph nodes and then to the spleen, accompanied by bacteremia. For antibiotic efficacy studies, BALB/c mice were challenged with 50 to 100 LD 50 of spores followed by intraperitoneal injection of either ciprofloxacin at 30 mg/kg of body weight (every 12 h [q12h]) or doxycycline at 40 mg/kg (q6h). A control group was treated with phosphate-buffered saline (PBS) q6h. Treatment was begun 24 h after challenge with groups of 10 mice for 14 or 21 days. The PBS-treated control mice all succumbed (10/10) to inhalation anthrax infection within 72 h. Sixty-day survival rates for ciprofloxacin and doxycycline-treated groups were 8/10 and 9/10, respectively, for 14-day treatment and 10/10 and 7/10 for 21-day treatment. Delayed treatment with ciprofloxacin initiated 36 and 48 h postexposure resulted in 80% survival and was statistically no different than early (24 h) postexposure treatment. Results using this mouse model correlate closely with clinical observations of inhalational anthrax in humans and with earlier antibiotic studies in the nonhuman primate inhalational anthrax model.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3