Distinct Evolutionary Pressures Underlie Diversity in Simian Immunodeficiency Virus and Human Immunodeficiency Virus Lineages

Author:

Fischer Will1,Apetrei Cristian23,Santiago Mario L.4,Li Yingying5,Gautam Rajeev3,Pandrea Ivona23,Shaw George M.56,Hahn Beatrice H.56,Letvin Norman L.7,Nabel Gary J.8,Korber Bette T.19

Affiliation:

1. Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

2. University of Pittsburgh Center for Vaccine Research, Pittsburgh, Pennsylvania, USA

3. Tulane National Primate Research Center, Covington, Louisiana, USA

4. Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA

5. Departments of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

6. Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

7. Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

8. Vaccine Research Center, Bethesda, Maryland, USA

9. The Santa Fe Institute, Santa Fe, New Mexico, USA

Abstract

ABSTRACT Simian immunodeficiency virus (SIV) infection of rhesus macaques causes immune depletion and disease closely resembling human AIDS and is well recognized as the most relevant animal model for the human disease. Experimental investigations of viral pathogenesis and vaccine protection primarily involve a limited set of related viruses originating in sooty mangabeys (SIVsmm). The diversity of human immunodeficiency virus type 1 (HIV-1) has evolved in humans in about a century; in contrast, SIV isolates used in the macaque model evolved in sooty mangabeys over millennia. To investigate the possible consequences of such different evolutionary histories for selection pressures and observed diversity in SIVsmm and HIV-1, we isolated, sequenced, and analyzed 20 independent isolates of SIVsmm, including representatives of 7 distinct clades of viruses isolated from natural infection. We found SIVsmm diversity to be lower overall than HIV-1 M group diversity. Reduced positive selection (i.e., less diversifying evolution) was evident in extended regions of SIVsmm proteins, most notably in Gag p27 and Env gp120. In addition, the relative diversities of proteins in the two lineages were distinct: SIVsmm Env and Gag were much less diverse than their HIV-1 counterparts. This may be explained by lower SIV-directed immune activity in mangabeys relative to HIV-1-directed immunity in humans. These findings add an additional layer of complexity to the interpretation and, potentially, to the predictive utility of the SIV/macaque model, and they highlight the unique features of human and simian lentiviral evolution that inform studies of pathogenesis and strategies for AIDS vaccine design.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3