Chinese hamster polyadenylated messenger ribonucleic acid: relationship to non-polyadenylated sequences and relative conservation during messenger ribonucleic acid processing.

Author:

Harpold M M,Wilson M C,Darnell J E

Abstract

We have further analyzed the metabolism of specific messenger ribonucleic acid (mRNA) sequences within the cytoplasmic and nuclear RNA of Chinese hamster ovary (CHO) cells by using a set of previously constructed complementary deoxyribonucleic acid (DNA) clones (Harpold et al., Cell 17:1025-1035, 1979) as specific molecular probes in a variety of RNA:DNA hybridization experiments. The majority of the labeled mRNA complementary to each of the nine clones was found in the polyribosomes, with some variation between individual sequences. The great majority of each specific mRNA labeled for 3 h or less was in the polyadenylated [poly(A)+] fraction. However, the amount of each sequence increased in the non-poly(A)+ [poly(A)-] fraction after very long label times, suggesting the derivation of the poly(A)- RNA from the poly(A)+ RNA. Eight of the nine mRNA's have cytoplasmic half-lives ranging from 8 to 14 h, whereas one of the mRNA's, the scarcest in the group, has a somewhat shorter half-life of approximately 3 h. The proportion of each of the specific long-lived mRNA's within the total labeled mRNA increased as a function of labeling time, indicating that a large fraction, probably greater than 50%, of the initially labeled poly(A)+ mRNA in CHO cells has a half-life of less than 3 h. A quantitative analysis of the kinetics of labeling of specific nuclear and cytoplasmic sequences indicated that a significant fraction of the mRNA sequences transcribed from genes containing these nine CHO sequences were successfully processed into mRNA. However, two of the CHO mRNA sequences were only partially conserved during nuclear processing to yield mRNA. These studies demonstrated that events at two post-transcriptional levels, differential nuclear processing efficiency of different primary transcripts and cytoplasmic stability of different mRNA's, can be involved in the determination of the cytoplasmic concentrations of different mRNA's.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3