The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae

Author:

Kaouass M1,Audette M1,Ramotar D1,Verma S1,De Montigny D1,Gamache I1,Torossian K1,Poulin R1

Affiliation:

1. CHUL Research Center, Ste. Foy, Quebec, Canada.

Abstract

Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3