Regulation of phenylalanine biosynthesis in Rhodotorula glutinis

Author:

Fiske M J,Kane J F

Abstract

The phenylalanine biosynthetic pathway in the yeast Rhodotorula glutinis was examined, and the following results were obtained. (i) 3-Deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase in crude extracts was partially inhibited by tyrosine, tryptophan, or phenylalanine. In the presence of all three aromatic amino acids an additive pattern of enzyme inhibition was observed, suggesting the existence of three differentially regulated species of DAHP synthase. Two distinctly regulated isozymes inhibited by tyrosine or tryptophan and designated DAHP synthase-Tyr and DAHP synthase-Trp, respectively, were resolved by DEAE-Sephacel chromatography, along with a third labile activity inhibited by phenylalanine tentatively identified as DAHP synthase-Phe. The tyrosine and tryptophan isozymes were relatively stable and were inhibited 80 and 90% by 50 microM of the respective amino acids. DAHP synthase-Phe, however, proved to be an extremely labile activity, thereby preventing any detailed regulatory studies on the partially purified enzyme. (ii) Two species of chorismate mutase, designated CMI and CMII, were resolved in the same chromatographic step. The activity of CMI was inhibited by tyrosine and stimulated by tryptophan, whereas CMII appeared to be unregulated. (iii) Single species of prephenate dehydratase and phenylpyruvate aminotransferase were observed. Interestingly, the branch-point enzyme prephenate dehydratase was not inhibited by phenylalanine or affected by tyrosine, tryptophan, or both. (iv) The only site for control of phenylalanine biosynthesis appeared to be DAHP synthase-Phe. This is apparently sufficient since a spontaneous mutant, designated FP9, resistant to the growth-inhibitory phenylalanine analog p-fluorophenylalanine contained a feedback-resistant DAHP synthase-Phe and cross-fed a phenylalanine auxotroph of Bacillus subtilis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3