Affiliation:
1. Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California
Abstract
SUMMARY
There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献