Characterization of a Serine Proteinase Mediating Encystation of Acanthamoeba

Author:

Moon Eun-Kyung1,Chung Dong-Il1,Hong Yeon-Chul1,Kong Hyun-Hee1

Affiliation:

1. Department of Parasitology, Kyungpook National University School of Medicine, Taegu, South Korea

Abstract

ABSTRACT Members of the genus Acanthamoeba , amphizoic protozoan parasites, are causative agents of granulomatous amoebic encephalitis and amoebic keratitis. Proteinases play a role in various biologic actions in Acanthamoeba , including host tissue destruction, pathogenesis, and digestion of phagocytosed food. Interestingly, we found that encystation of Acanthamoeba was inhibited by the serine proteinase inhibitor phenylmethanesulfonyl fluoride. In this study, we characterize a serine proteinase that is involved in mediating the encystation of Acanthamoeba . This encystation-mediating serine proteinase (EMSP) is shown to be highly expressed during encystation by real-time PCR and Western blot analysis. Chemically synthesized small interfering RNA against EMSP inhibited the expression of EMSP mRNA and significantly reduced the encystation efficiency of Acanthamoeba . An EMSP-enhanced green fluorescent protein fusion protein localized to vesicle-like structures within the amoeba. Using LysoTracker analysis, these vesicular structures were confirmed to be lysosomes. After incubation of the transfected amoeba in encystment media, small fluorescent vesicle-like structures gathered and formed ball-like structures, which were identified as colocalizing with the autophagosome. Taken together, these results indicate that EMSP plays an important role in the differentiation of Acanthamoeba by promoting autolysis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3