Transcript Levels of the Eukaryotic Translation Initiation Factor 5A Gene Peak at Early G 1 Phase of the Cell Cycle in the Dinoflagellate Crypthecodinium cohnii

Author:

Chan K. L.1,New D.1,Ghandhi S.1,Wong F.1,Lam C. M. C.1,Wong J. T. Y.1

Affiliation:

1. Biology Department, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong Special Administrative Region, People's Republic of China

Abstract

ABSTRACT A cDNA encoding a eukaryotic translation initiation factor 5A (eIF-5A) homolog in heterotrophic dinoflagellate Crypthecodinium cohnii (CceIF-5A) was isolated through random sequencing of a cDNA library. The predicted amino acid sequence possesses the 12 strictly conserved amino acids around lysine 52 (equivalent to lysine 50 or 51 in other eukaryotes). A single 1.2-kb band was detected in Northern blot analysis. In synchronized C. cohnii cells, the transcript level peaked at early G 1 and decreased dramatically on the entry to S phase. Although this has not been previously reported, studies of budding yeast ( Saccharomyces cerevisiae ) and certain mammalian cell types suggest a role for eIF-5A in the G 1 /S transition of the eukaryotic cell cycle. Phylogenetic trees constructed with 26 other published eIF-5A sequences suggest that CceIF-5A, while falling within the eukaryotic branches, forms a lineage separate from those of the plants, animals, and archaebacteria. The posttranslational modification of eIF-5A by a transfer of a 4-aminobutyl moiety from spermidine to conserved lysine 50 or 51, forming amino acid hypusine, is the only demonstrated specific function of polyamines in cell proliferation. It has been suggested that polyamines stimulate population growth of bloom-forming dinoflagellates in the sea. We demonstrate here putrescine-stimulated cell proliferation. Furthermore, ornithine decarboxylase inhibitor d -difluoromethylornithine and the specific hypusination inhibitor N -guanyl-1,7-diaminoheptane exhibited inhibitory effects in two species of dinoflagellates. The possible links of polyamines and saxitoxin synthesis to the arginine cycle are also discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3