Analysis of the binding proteins and activity of the long terminal repeat of Moloney murine leukemia virus during differentiation of mouse embryonal carcinoma cells

Author:

Tsukiyama T1,Niwa O1,Yokoro K1

Affiliation:

1. Department of Pathology, Hiroshima University, Japan.

Abstract

Mouse embryonal carcinoma (EC) cell lines were established which carry the stably integrated chloramphenicol acetyltransferase (CAT) gene under the control of the transcriptional elements of the long terminal repeat (LTR) of Moloney murine leukemia virus. The activity of three elements of the stably integrated LTR was analyzed in undifferentiated EC cells (stable CAT assay). Results of the study are summarized as follows. (i) In the stable assay, the promoter region of the LTR was inactive in undifferentiated ECA2 and F9 cells, and the level of the activity was 10(-4) of that in NIH 3T3 cells. (ii) In contrast to the results of the transient assay, the enhancer was active in undifferentiated ECA2 cells and in F9 cells. It activated CAT activity more than 60-fold and about 8-fold in ECA2 cells and F9 cells, respectively. (iii) Suppression by ELP, the embryonal LTR-binding protein, was more pronounced in the stable assay than in the transient assay. These data suggest that, when compared with NIH 3T3 cells, a major factor for the inactivity of the LTR in EC cells is the inefficiency of the promoter in this assay. Transcriptional activity of the LTR was analyzed during the differentiation of EC cells. In the case of ECA2 cells, the magnitude of activation by the enhancer did not change during differentiation. The activity of the promoter increased about 10-fold, and the suppression by ELP became negligible 4 days after the induction of differentiation. Upon differentiation of F9 cells, the activity of the enhancer increased more than 300-fold, but the promoter remained inactive. The pattern of LTR-binding proteins also varied during the differentiation of EC cells. Our present data suggest that the activity of LTR elements as assayed by the stable assay differs from the activity as assayed by the transient assay. It also indicates that the activity of these elements exhibits cell-type-specific changes during the differentiation of EC cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SF-1 and FTZ-F1;The Nuclear Receptor FactsBook;2002

2. Host cis -Mediated Extinction of a Retrovirus Permissive for Expression in Embryonal Stem Cells during Differentiation;Journal of Virology;1998-01

3. Transcriptional Regulation by Competition between ELP Isoforms and Nuclear Receptors;Biochemical and Biophysical Research Communications;1997-01

4. Analysis of DNase I Hypersensitive Site of the ELP Gene;Biochemical and Biophysical Research Communications;1996-05

5. Genomic Organization and Isoforms of the Mouse ELP Gene1;The Journal of Biochemistry;1995-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3