Identification of a Minimal Size Requirement for Termination of Vesicular Stomatitis Virus mRNA: Implications for the Mechanism of Transcription

Author:

Whelan Sean P. J.1,Barr John N.1,Wertz Gail W.1

Affiliation:

1. Department of Microbiology, The Medical School, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

ABSTRACT The nonsegmented negative-strand RNA (NNS) viruses have a single-stranded RNA genome tightly encapsidated by the viral nucleocapsid protein. The viral polymerase transcribes the genome responding to specific gene-start and gene-end sequences to yield a series of discrete monocistronic mRNAs. These mRNAs are not produced in equimolar amounts; rather, their abundance reflects the position of the gene with respect to the single 3′-proximal polymerase entry site. Promoter-proximal genes are transcribed in greater abundance than more distal genes due to a localized transcriptional attenuation at each gene junction. In recent years, the application of reverse genetics to the NNS viruses has allowed an examination of the role of the gene-start and gene-end sequences in regulating mRNA synthesis. These studies have defined specific sequences required for initiation, 5′ modification, termination, and polyadenylation of the viral mRNAs. In the present report, working with Vesicular stomatitis virus , the prototypic Rhabdovirus , we demonstrate that a gene-end sequence must be positioned a minimal distance from a gene-start sequence for the polymerase to efficiently terminate transcription. Gene-end sequences were almost completely ignored in transcriptional units less than 51 nucleotides. Transcriptional units of 51 to 64 nucleotides allowed termination at the gene-end sequence, although the frequency with which polymerase failed to terminate and instead read through the gene-end sequence to generate a bicistronic transcript was enhanced compared to the observed 1 to 3% for wild-type viral mRNAs. In all instances, failure to terminate at the gene end prevented initiation at the downstream gene start site. In contrast to this size requirement, we show that the sequence between the gene-start and gene-end signals, or its potential to adopt an RNA secondary structure, had only a minor effect on the efficiency with which polymerase terminated transcription. We suggest three possible explanations for the failure of polymerase to terminate transcription in response to a gene-end sequence positioned close to a gene-start sequence which contribute to our emerging picture of the mechanism of transcriptional regulation in this group of viruses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3