Sublethal Staphylococcal Enterotoxin B Challenge Model in Pigs To Evaluate Protection following Immunization with a Soybean-Derived Vaccine

Author:

Hudson Laura C.12,Seabolt Brynn S.3,Odle Jack3,Bost Kenneth L.12,Stahl Chad H.3,Piller Kenneth J.12

Affiliation:

1. Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA

2. SoyMeds, Inc., Davidson, North Carolina, USA

3. Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA

Abstract

ABSTRACT In an effort to develop a sustainable platform for manufacturing protein-based vaccine candidates, we expressed a triple mutant of staphylococcal enterotoxin B carrying the L45R, Y89A, and Y94A modifications in transgenic soybean seeds (soy-mSEB). Soy-mSEB possessed no detectable superantigen activity in vitro . We found that this soybean-derived, nontoxic mutant of SEB could be stably expressed, stored in seeds for extended periods at room temperature without degradation, and easily purified from contaminating soy proteins. Vaccination of pigs with purified soy-mSEB, or the identical triple mutant expressed in Escherichia coli ( E. coli -mSEB), resulted in high antibody titers against the native toxin in immunized animals. In fact, titers were indistinguishable regardless of the immunogen used, demonstrating the equivalence of soy-mSEB and E. coli -mSEB vaccinations. Antisera from either immunized group were able to block native SEB superantigen activity in an in vitro neutralization assay. Similar results were obtained when immunized animals were challenged with a sublethal dose of native toxin. Significant reductions in toxin-induced serum cytokine levels were observed in soy-mSEB- and E. coli -mSEB-immunized pigs compared to control animals. The reductions in SEB-induced cytokine responses were similar regardless of the immunogen used for vaccination. Surprisingly, however, some clinical symptoms, such as prostration, lethargy, emesis, and/or diarrhea, were still observed in all immunized animals. These studies demonstrate the potential for soybean-derived proteins as a platform technology for sustainable vaccine manufacturing and the usefulness of a sublethal challenge model in pigs for evaluating the efficacy of potential SEB vaccine candidates.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3