The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae

Author:

Bisson L F,Neigeborn L,Carlson M,Fraenkel D G

Abstract

Glucose uptake mutants have not been previously obtained in Saccharomyces cerevisiae, possibly because there seem to be at least two transport systems, of low and high affinities. We showed that snf3 (sucrose nonfermenting) mutants did not express high-affinity glucose uptake. Furthermore, their growth was completely impaired on low concentrations of glucose in the presence of antimycin A (which blocks respiration). Several genes which complemented the original snf3 gene were obtained on multicopy plasmids. Some of them, as well as plasmid-carried SNF3 itself, conferred a substantial increase in high-affinity glucose uptake in both snf3 and wild-type hosts. The effects of glucose on the expression of such a plasmid-determined high-affinity uptake resembled those in the wild type. Other genes complementing snf3 seemed to cause an increase in low-affinity glucose uptake. We suggest that SNF3 may function specifically in high-affinity glucose uptake, which is needed under some conditions of growth on low glucose concentrations. SNF3 itself or the other complementing genes may specify components of the glucose uptake system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3