Genome Sequence-Based Fluorescent Amplified Fragment Length Polymorphism of Campylobacter jejuni , Its Relationship to Serotyping, and Its Implications for Epidemiological Analysis

Author:

Desai Meeta1,Logan Julie M. J.1,Frost Jennifer A.2,Stanley John1

Affiliation:

1. Molecular Biology Unit, Virus Reference Division,1 and

2. Campylobacter Reference Unit, Laboratory of Enteric Pathogens,2 Central Public Health Laboratory, London NW9 5HT, United Kingdom

Abstract

ABSTRACT The published genome sequence of Campylobacter jejuni strain NCTC 11168 was used to model an accurate and highly reproducible fluorescent amplified fragment length polymorphism (FAFLP) analysis. Predicted and experimentally observed amplified fragments (AFs) generated with the primer pair Hin dIII+A and Hha I+A were compared. All but one of the 61 predicted AFs were reproducibly detected, and no unpredicted fragments were amplified. This FAFLP analysis was used to genotype 74 C. jejuni strains belonging to the nine heat-stable (HS) serotypes most prevalent in human disease in England and Wales. The 74 C. jejuni strains exhibited 60 FAFLP profiles, and cluster analysis of them yielded a radial tree showing genetic relationships between and within 13 major clusters. Some clusters were related, and others were unrelated, to a single HS serotype. For example, all strains belonging to serotypes HS6 and HS19 grouped into corresponding single genotypic clusters, while strains of serotypes HS11 and HS18 each grouped into two genotypic clusters. Strains of HS50, the most prevalent serotype infecting humans, were found both in one large (multiserotype) cluster complex and dispersed throughout the tree. The strain genotypes within each FAFLP cluster were characterized by a particular combination of AFs, and among the cluster there were additional differential AFs. Identification of such AFs could act as a search tool to look for potential associations with disease or animal hosts, when applied to large number of human isolates. Genome-sequence based FAFLP, thus, has the potential to establish a genetic database for epidemiological investigations of Campylobacter .

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3