Screening test for assessment of ultimate biodegradability: linear alkylbenzene sulfonates

Author:

Gledhill W E

Abstract

A relatively simple shake-flask system for determining CO2 evolution was developed to assess the ultimate biodegradability by soil and sewage micro-organisms of chemicals which enter the environment. Linear alkylbenzene sulfonates (LAS) were used as model compounds to evaluate the method and were found to undergo substantial biodegradation in this dilute system. At the 30 mg/liter test concentration, higher-molecular-weight LAS compounds were biodegraded at a slower rate and to a lesser extent than lower-molecular-weight LAS, an effect which was eliminated or greatly reduced upon incremental addition of the LAS to the test medium during the first week of incubation. LA35S was used to demonstrate rapid LAS desulfonation, and 14CO2 evolution studies with (14C) benzene ring-labeled LAS indicated concomitant biodegradation of the entire LAS molecule as well as the LAS aromatic component. The test can be employed to examine numerous compounds at the same time and is readily adapted to studies of the effect of variation in temperature and oxygen concentration on biodegradation.

Publisher

American Society for Microbiology

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference13 articles.

1. American Public Health Association. 1971. Standard methods for the examination of water and waste water 13th ed. p. 489-491. American Public Health Association Inc. New York.

2. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters;Atlas R. M.;Biotechnol. Bioeng.,1972

3. Linear alkylbenzene sulfonate: biodegradation and aquatic interactions;Gledhill W. E.;Adv. Appl. Microbiol.,1974

4. Howard P. H. J. Saxena P. R. Durkin and L.-T. Ou. 1974. Survey and evaluation of available techniques for determining persistance and route of degradation of chemical structures in the environment. EPA report. Contract no. 68-01-2210. Syracuse University Research Corp. Syracuse N.Y.

5. Biochemical oxidation of some commercially important organic cyanides;Ludzack F. J.;Sewage Ind. Wastes,1959

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3