Vaccinia Virus Blocks Gamma Interferon Signal Transduction: Viral VH1 Phosphatase Reverses Stat1 Activation

Author:

Najarro Pilar1,Traktman Paula2,Lewis John A.1

Affiliation:

1. Department of Anatomy & Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203,1 and

2. Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 532262

Abstract

ABSTRACT We have analyzed the effects of vaccinia virus (VV) on gamma interferon (IFN-γ) signal transduction. Infection of cells with VV 1 to 2 h prior to treatment with IFN-γ inhibits phosphorylation and nuclear translocation of Stat1 and consequently blocks accumulation of mRNAs normally induced by IFN-γ. While phosphorylation of other proteins in the IFN-γ pathway was not affected, activation of Stat1 by other ligand-receptor systems was also blocked by VV. This block of Stat1 activation was dose dependent, and although viral protein synthesis was not required, entry and uncoating of viral cores appear to be needed to block the accumulation of phosphorylated Stat1. These results suggest that a virion component is responsible for the effect. VV virions contain a phosphatase (VH1) that is sensitive to the phosphatase inhibitor Na 3 VO 4 but not to okadaic acid. Addition of Na 3 VO 4 but not okadaic acid restored normal Stat1 phosphorylation levels in VV-infected cells. Moreover, virions containing reduced levels of VH1 were unable to block the IFN-γ signaling pathway. In vitro studies show that the phosphatase can bind and dephosphorylate Stat1, indicating that this transcription factor can be a substrate for VH1. Our results reveal a novel mechanism by which VV interferes with the onset of host immune responses by blocking the IFN-γ signal cascade through the dephosphorylating activity of the viral phosphatase VH1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3