Formation and Operation of the Histidine-degrading Pathway in Pseudomonas aeruginosa

Author:

Lessie Thomas G.1,Neidhardt Frederick C.1

Affiliation:

1. Department of Biological Sciences, Purdue University, Lafayette, Indiana 47907

Abstract

Histidine ammonia lyase (histidase), urocanase, and the capacity to degrade formiminoglutamate, which are respectively involved in steps I, II, and IV in the catabolism of histidine, were induced during growth of Pseudomonas aeruginosa on histidine or urocanate, and were formed gratuitously in the presence of dihydro-urocanate. Urocanase-deficient bacteria formed enzymes I and IV constitutively; presumably they accumulate enough urocanate from the breakdown of endogenous histidine to induce formation of the pathway. Urocanate did not satisfy the histidine requirement of a histidine auxotroph, indicating that it probably acted as an inducer without being converted to histidine. The results imply that urocanate is the physiological inducer of the histidine-degrading enzymes in P. aeruginosa . Enzymes of the pathway were extremely sensitive to catabolite repression; enzymes I and II, but not IV, were coordinately repressed. Our results suggest a specific involvement of nitrogenous metabolites in the repression. Mutant bacteria with altered sensitivity to repression were obtained. The molecular weight of partially purified histidase was estimated at 210,000 by sucrose gradient centrifugation. Its K m for histidine was 2 × 10 −3 m in tris(hydroxymethyl)aminomethane chloride buffer. Sigmoid saturation curves were obtained in pyrophosphate buffer, indicating that the enzyme might have multiple binding sites for histidine. Under certain conditions, histidase appeared to be partially inactive in vivo. These findings suggest that some sort of allosteric interaction involving histidase may play a role in governing the operation of the pathway of histidine catabolism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3