Coupling of Energy to Folate Transport in Lactobacillus casei

Author:

Henderson Gary B.1,Zevely Edward M.1,Huennekens F. M.1

Affiliation:

1. Department of Biochemistry, Scripps Clinic and Research Foundation, La Jolla, California 92037

Abstract

Lactobacillus casei cells can accumulate folate to an intracellular concentration in excess of 500 μM and to concentration gradients (relative to the extracellular compartment) of several thousand-fold. Maximum rates of folate transport are achieved rapidly ( t 1/2 < 1 min) after the addition of glucose to energy-depleted cells and occur at intracellular adenosine 5'-triphosphate concentrations above 625 μM. The rate of folate transport and the adenosine 5'-triphosphate content of cells are both extremely sensitive to arsenate and decrease in parallel with increasing concentrations of the inhibitor, indicating a requirement for phosphate-bond energy in the transport process. The energy source is not a membrane potential or a pH gradient generated via the membrane-bound adenosine triphosphatase, since dicyclohexylcarbodiimide (an adenosine triphosphatase inhibitor) and carbonyl cyanide m -chlorophenylhydrazone (a proton conductor) have little effect on the uptake process. The K + -ionophore, valinomycin, is an inhibitor of folate transport, but does not act via a mechanism involving dissipation of the membrane potential. This can be deduced from the facts that the inhibition by valinomycin is relatively insensitive to pH, is considerably greater in Na + - than in K + -containing buffers, and is not enhanced by the addition of proton conductors. Folate efflux is not affected by valinomycin, glucose, or various metabolic inhibitors, although a rapid release of the accumulated vitamin can be achieved by the addition of unlabeled folate together with an energy source (glucose). These results suggest that the active transport of folate into L. casei is energized by adenosine 5'-triphosphate or an equivalent energy-rich compound, and that coupling occurs not via the membrane-bound adenosine triphosphatase but by direct interaction of the energy source with a component of the transport system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3